
WireGuard is generally described on another page, here: VPN - Wireguard. This page is about what
is needed to configure WireGuard for routing over the VPN; especially with a focus on OSPF.

It's worth a section to touch on the cryptokey routing feature of WireGuard and how it works with
the mesh.

All WireGuard nodes list their peers in a configuration file. Among the peer configuration is a public
key and a list of acceptable IP ranges for the peer. Once the tunnel is brought up, packets from
inside the tunnel must match the IPs in the list. Packets are routed to the peer using the IP range
list and encrypted for the destination peer with its specific public key. Given this, no two peers may
have overlapping IP ranges. Therefore, routing through two different peers to another peer
downstream, or the internet, on a single wireguard connection cannot be accomplished using
WireGuard in this manner.

However, the cryptokey routing is per-interface. It's possible for an interface to allow "all IPs" (
0.0.0.0/0) to/from a peer. All IPs and dynamic routing can be accomplished over a fully open
WireGuard interface, but only with one other peer, and one new interface for each peer pair.
Therefore for routed WireGuard connections a special configuration is required on both ends to
make this possible.

Each side of a routed WireGuard VPN link will need the following:

A dedicated linux server to be the VPN router.
A new WireGuard interface for the other side of the VPN.
A routing daemon, probably BIRD, which can perform OSPF in PtP mode.

The server on each side of the VPN will need to be configured appropriately. When handling the
VPN, the server will have "two internets", and possibly other traffic direction. As such, it's important

Birdc

A Note on Cryptokey Routing

Process

Dedicate Linux Server

https://wireguard.com/
https://wiki.mesh.nycmesh.net/link/103#bkmrk-page-title

to configure the system correctly so that it does not "leak" traffic from the mesh onto the internet,
vice versa, nor from any other network the same server handles. It is best to use a dedicated box,
which will still need some custom "rules" to make it happen.

There are a few approaches to handle the traffic separation:

Linux has the ability to handle multiple routing tables. They are easy to define through a single file
in the /etc/ path. The BIRD routing daemon can also be configured to manage routes in the non-
standard routing tables, so these two pieces easily work together.

One challenge with multiple routing tables is that a single device (WireGuard endpoint or Ethernet
card) cannot be "tied" to a routing table. Instead, a rule (in addition to the firewall) is needed, to
select the the routing table used for making a decision. These rules are easy to create but can be
somewhat challenging to get right, and there is no good universal way to manage them.

Edit /etc/iproute2/rt_tables and add a second table for the mesh:

Later in this write-up will describe how to add WireGuard interfaces and create their configuration
in (if using Debian/Ubuntu) /etc/network/interfaces.d/* . If using the multiple routing tables
method, additional lines will need to be added. They will be added in the example below, but show
specificially here:

1) Multiple Routing Tables and firewalling

Set up a new routing table for the mesh:

$ vi /etc/iproute2/rt_tables

1 admin

2 nycmesh

3 public

Modify network file to add ip rules

auto wg111

iface wg111 inet static

 address 10.70.xx.1/31

 pre-up ip link add $IFACE type wireguard

 pre-up wg setconf $IFACE /etc/wireguard/$IFACE.conf

 pre-up ip link set up dev $IFACE

 pre-up ip route add 10.70.xx.1/31 dev $IFACE table nycmesh

 pre-up ip rule add iif $IFACE pref 1031 table nycmesh

 pre-up ip rule add from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

Note the order of the pre-up and post-down rules, as it is critical. Some systems may vary in terms
of the rules, depending on your distribution. Report back and help us update the document if
something is off.

Note also the table nycmesh which is referenced by name. The name needs to match the rt_tables
name.

Local Interfaces, to mesh-routers at the same site, will also need ip rules. For example:

Alternately, a newer Linux feature, namespaces, which is what containers are based on, can be
used to provide segregation. Although containers and namespaces are intertwined, containers
have a highly-simplified version of the general network namespace concept. As such, containers
are not directly suitable for use as routing namespaces without much extra work. Therefore, the
more challenging raw namespaces much be used.

This way has not yet been explored, it is more theoretical, so follow the first approach
for now

Each side's dedicated Linux server will need a new WireGuard interface for the connection. This is
because each side needs to use 0.0.0.0/0 as the AllowedIPs so that any mesh address can be
routed over the connection.

 post-down ip rule del iif $IFACE table nycmesh

 post-down ip rule del from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

Mesh internal

allow-hotplug <Local Interface>

iface <Local Interface> inet static

 address 10.69.XX.YY/16

 post-up ip route add 10.69.0.0/16 dev $IFACE table nycmesh

 post-up ip rule add iif $IFACE pref 1021 table nycmesh

 post-up ip rule add from 10.69.XX.YY table nycmesh

 post-down ip route del 10.69.0.0/16 dev $IFACE table nycmesh

 post-down ip rule del iif $IFACE table nycmesh

 post-down ip rule del from 10.69.XX.YY table nycmesh

2) Linux Namespaces / Containers.

WireGuard interface for each side

The connection will also need a pair of unique private IP addresses to route the internal traffic. At
this time, the addresses should be taken from the NYC Mesh IP Ranges spreadsheet to ensure they
are unique. Please ask Zach for an address pair.

Below are WireGuard configuration files which can be used as a basis for setting up a connect. (Be
sure to replace the keys and addresses with the proper inputs).

Note the suggested device names -- It is recommended to name the interface as wgX where X
is the destination node number the connection. This makes troubleshooting and configuration
much easier..

Side 1 (Node 111):

Side 2 (Node 222):

Next, setup the VPN interfaces on each side to auto-start as part of the system. The below example
will be for Debian/Ubuntu, but other Linux distribution are similar.

Side 1 (Node 111):

Edit the file /etc/network/interfaces.d/wg222.conf . Page the content as follows:

This is Node 111 Interface wg222

[Interface]

PrivateKey = ThisIsThePrivateKeyOnSide1

ListenPort = 51825

Node 222

[Peer]

PublicKey = ThisIsThePublicKeyFromSide2

AllowedIPs = 0.0.0.0/0

This is Node 222 Interface wg111

[Interface]

PrivateKey = ThisIsThePrivateKeyOnSide2

ListenPort = 51825

Node 111

[Peer]

PublicKey = ThisIsThePublicKeyFromSide1

AllowedIPs = 0.0.0.0/0

Side 2 (Node 222):

Edit the file /etc/network/interfaces.d/wg111.conf . Page the content as follows:

Bring Up the interface on each side like so:

To verify the tunnel is working, a ping from one side's address to the other side will yield a
response. For Example:

auto wg222

iface wg222 inet static

 address 10.70.xx.0/31

 pre-up ip link add $IFACE type wireguard

 pre-up wg setconf $IFACE /etc/wireguard/$IFACE.conf

 pre-up ip link set up dev $IFACE

 pre-up ip route add 10.70.xx.1/31 dev $IFACE table nycmesh

 pre-up ip rule add iif $IFACE pref 1031 table nycmesh

 pre-up ip rule add from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

 post-down ip rule del iif $IFACE table nycmesh

 post-down ip rule del from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

auto wg111

iface wg111 inet static

 address 10.70.xx.1/31

 pre-up ip link add $IFACE type wireguard

 pre-up wg setconf $IFACE /etc/wireguard/$IFACE.conf

 pre-up ip link set up dev $IFACE

 pre-up ip route add 10.70.xx.1/31 dev $IFACE table nycmesh

 pre-up ip rule add iif $IFACE pref 1031 table nycmesh

 pre-up ip rule add from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

 post-down ip rule del iif $IFACE table nycmesh

 post-down ip rule del from 10.70.xx.0 table nycmesh

 post-down ip link del $IFACE

#Side1# ifup wg222

#Side2# ifup wg111

This indicates the tunnel is setup successfully.

The routing daemon (BIRD is recommended) needs to be configured to properly convey the routes
to/from the network.

Remember, it is important to not leak routes in or out of the network, especially if the VPN node it
to be a transit node connecting far sides of the mesh.

Additionally, BIRD's OSPF implementation is a bit finicky -- For example, it does not fully support
PTMP mode, unless it communicates with other BIRD instances.

Here is a recommended BIRD configuration for a VPN connection. Key lines will be discussed in-line
in the comments.

#Side1# ping -c 2 10.70.89.1

PING 10.70.xx.1 (10.70.xx.1) 56(84) bytes of data.

64 bytes from 10.70.xx.1: icmp_seq=1 ttl=64 time=5.28 ms

64 bytes from 10.70.xx.1: icmp_seq=2 ttl=64 time=5.67 ms

--- 10.70.xx.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 5.280/5.479/5.678/0.199 ms

Routing Daemon - Bird - OSPF

The router id should be the Node's 10-69-net IP.

If the node number is 1234:

If this is the first router, the IP is 10.69.12.34

If this is the second router, the IP is 10.69.12.134 (more likely)

If this is the third router, the IP is 10.69.12.234 (rare case; Last octet needs to be <255

)

Important: Use this same number in your local mesh interface above!

router id <Our 10-69-net IP>;

protocol device {

 scan time 10;

}

Add Local interfaces here which will connect to other local routers, such as an Omni

protocol direct {

 interface "<Local Interface>";

 interface "wg*";

 interface "dummy*";

}

protocol kernel {

 # Only add this line below if using the multiple routing table method.

 # Note this is referenced by number, use the correct number table from rt_tables file

 kernel table 2;

 scan time 10;

 persist;

 learn;

 metric 64;

 import none;

 export filter {

 if source = RTS_STATIC then reject;

 accept;

 };

}

protocol ospf {

 import all;

 export none;

 area 0 {

 # Add this interface clause for each local interface connecting to local

routers

 interface "<Local Interface>" {

 # Cost of 1 is safe for this because it's just a local jumper to

another router which has cost

 cost 1;

 # Use PtP is going to a Mikrotik Router. BIRD and Mikrotik dont speak

the same PTMP

 # Use PtMP if going to other BIRD instances

 # Use Broadcast for special scenarios that make sense, such as at a

supernode.

 type ptp;

 # Add Neighbors via IPs on that interface.

 neighbors {

Once everything is running, the WireGuard tunnel is operating, and BIRD is started, check to see if
everything is connecting properly. It may be a good idea to not initially connect other mesh routers
to the VPN router until after you verify it is communicating properly and not leaking routes.

Start BIRD and check the OSPF protocol, see below:

 <Local Neighbor>;

 };

 };

 # Make sure to use the "wgXXXX" interface for the remove node.

 # Add one of these clauses for each wireguard connection

 interface "wg<Other Node Number>" {

 # Cost 15 is for a Really Good WireGuard connection. Cost of 40 is

more typical for a VPN

 cost 15;

 # PTMP for other BIRD instances. If WireGuard it's gonna be linux so

BIRD

 type ptmp;

 neighbors {

 <Other WireGuard Node>;

 };

 };

 };

}

Testing the configuration

Check BIRD functionality.

birdc

bird> show protocol

name proto table state since info

device1 Device master up 2020-03-14

direct1 Direct master up 2020-03-14

static1 Static master up 2020-03-14

kernel1 Kernel master up 2020-03-14

ospf1 OSPF master up 2020-03-14 Running

bird> show protocol all ospf1

Above, we see show protocol lists ospf1 as Running . This means is has successfully connected to
other nodes and is functioning properly. It may also say alone which could indicate a problem, or,
could mean it has not yet connected (it maybe take up to one minute).

Next we see that inspecting the ospf protocol more, we have received 464 routes, and are
exporting 0 routes This is the important part. In thie case exporting means we are adding some
routes to the mesh. We may want to, for special cases, at this point, but if the VPN router is pass-
through, then it should say 0 as a best practice.

Lastly, if we are exporting routes, we can check them with show route export ospf1 . In this case we
aren't so there's no problem. If we do, we can fix the problem with this knowledge.

There are many other commands within BIRD to help debug, check them out.

name proto table state since info

ospf1 OSPF master up 2020-03-14 Running

 Preference: 150

 Input filter: ACCEPT

 Output filter: REJECT

 Routes: 464 imported, 0 exported, 461 preferred

 Route change stats: received rejected filtered ignored accepted

 Import updates: 64065 1 0 0 64064

 Import withdraws: 16846 0 --- 2 16845

 Export updates: 64067 64059 8 --- 0

 Export withdraws: 16845 --- --- --- 0

bird> show route export ospf1

bird>

Revision #3
Created 9 December 2023 04:39:53 by Willard Nilges
Updated 11 June 2024 04:08:42 by James

